Trigonometrinės formulės

  • {statinis prieš ∠ A}/{įžambinė}=sin ∠ A
  • {statinis prie ∠ A}/{įžambinė}=cos ∠ A
  • {statinis prieš ∠ A}/{statinis prie ∠ A}=tg ∠ A
  • {statinis prie ∠ A}/{statinis prieš ∠ A}=ctg ∠ A

30° 45° 60°
sin alpha 1/2 sqrt{2}/2 sqrt{3}/2
cos alpha sqrt{3}/2 sqrt{2}/2 1/2
tg alpha sqrt{3}/3 1 sqrt{3}
ctg alpha sqrt{3} 1 sqrt{3}/3

  • sin^2 alpha + cos^2 alpha=1
  • tg alpha={sin alpha}/{cos alpha}
  • tg alpha * ctg alpha = 1
  • sin 2alpha = 2 * sin alpha * cos alpha
  • cos 2alpha = cos^2 alpha - sin^2 alpha = 1 - 2sin^2 alpha = 2cos^2 alpha - 1
  • 1 + tg^2 alpha = 1/{cos^2 alpha}, 1 + ctg^2 alpha = 1/{sin^2 alpha}
  • 2 * sin^2 alpha = 1 - cos 2*alpha, 2 * cos^2 alpha = 1 + cos^2 alpha
  • sin(alpha pm beta) = sin alpha * cos beta pm cos alpha * sin beta
  • cos(alpha pm beta) = cos alpha * cos beta overline{+} sin alpha * sin beta
  • sin alpha pm sin beta = 2 * sin {{alpha pm beta}/2} * cos {{alpha overline{+} beta}/2}
  • cos alpha + cos beta = 2*cos {{alpha + beta}/2} * cos {{alpha - beta}/2}
  • cos alpha - cos beta = -2 * sin {{alpha + beta}/2} * sin {{alpha - beta}/2}
  • tg (alpha pm beta) = {tg alpha pm tg beta}/{1 overline{+} tg alpha * tg beta}

Sinusų teorema ir jos išvada

a/{sin alpha} = b/{sin beta} = c/{sin gamma} = 2R

R - spindulys

This website uses cookies for visitor traffic analysis. By using the website, you agree with storing the cookies on your computer.More information
 
Jei nenurodyta kitaip, šio wiki turinys ginamas tokia licencija: CC Attribution-Noncommercial-Share Alike 4.0 International
Recent changes RSS feed Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki